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Outline of the Course
1. Review of Probability
2. Stationary processes
3. Eigen Analysis, Singular Value Decomposition (SVD) and Principal

Component Analysis (PCA)
4. The Learning Problem
5. Training vs Testing
6. Estimation theory: Maximum likelihood and Bayes estimation
7. The Wiener Filter
8. Adaptive Optimization: Steepest descent and the LMS algorithm
9. Least Squares (LS) and Recursive Least Squares (RLS) algorithm

10. Overfitting
11. Regularization: Ridge and Lasso regression models.
12. Neural Networks
13. Matrix Completion
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Stationary Process and Models

I Statistic process describes the time evolution of statistical phenomena
I A stochastic process is not a single function of time but an infinite

number of possible realizations
I A single realization is called a time series
I A full joint distribution function of an arbitrary stochastic process is

difficult to obtain or estimate
I Settle for a partial characterization
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Consider a discrete-time stochastic process

x(n),x(n−1), . . . ,x(n−M)

which may be complex.
Definitions (Mean, Auto-Correlation, and Auto-Covariance)
The mean process is given by

µ(n) = E{x(n)}

The auto–correlation is defined as

r(n,n−k) = E{x(n)x∗(n−k)}

The auto–covariance is given by

c(n,n−k) = E{[x(n)−µ(n)][x(n−k)−µ(n−k)]∗}
= r(n,n−k)−µ(n)µ∗(n−k)
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Definition (Wide-Sense Stationary)
A discrete-time stochastic process is wide–sense stationary (WSS) if

µ(n) = µ for all n
r(n,n−k) = r(k) and
c(n,n−k) = c(k) k = 0,±1,±2, . . .

Let x(n) = [x(n),x(n−1), . . . ,x(n−M +1)]T be a M ×1 observation vector.
Then for {x(n)} WSS, the correlation matrix is

R = E{x(n)xH(n)}=


r(0) r(1) · · · r(M −1)
r(−1) r(0) · · · r(M −2)

... ... . . . ...
r(−M +1) r(−M +2) · · · r(0)





5/35

Stationary Processes FSAN/ELEG815

Properties of the correlation matrices

For a stationary discrete time process: RH = R (Hermetian)
r(0) r(1) · · · r(M −1)
r(−1) r(0) · · · r(M −2)

... ... . . . ...
r(−M +1) r(−M +2) · · · r(0)

=


r(0) r∗(−1) · · · r∗(−M +1)
r∗(1) r(0) · · · r∗(−M +2)
... ... . . . ...

r∗(M −1) r∗(M −2) · · · r(0)


Consequence: ⇒ r(−k) = r∗(k)
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The correlation matrix is Toeplitz

R =



r(0) r(1) r(2) · · · r(M −1)
r∗(1) r(0) r(1) · · · r(M −2)
r∗(2) r∗(1) r(0) · · · r(M −3)
... ... ... ... ...

r∗(M −1) r∗(M −2) r∗(M −3) · · · r(0)


For any non-zero vector a

aRaH ≥ 0 (positive semi-definite)

and usually
aRaH > 0 (positive definite)

Result: R is positive definite if the samples in x are not linearly dependent. In
this case R−1 exists.
Historical Note: Diagonal–constant matrices are named after the
mathematician Otto Toeplitz (1881–1940)
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Stochastic Models

I A model is used to describe the hidden laws governing the generation of
physical data observed

I We assume that x(n),x(n−1), · · · have statistical dependencies that can
be modeled as

Discrete time
linear fitler

v(n) x(n)

process
where v(n) is a purely random process

I Linear model types:
1. Auto Regressive – no past model input samples used
2. Moving Average – no past model output samples used
3. Auto Regressive Moving Average – both past input and output used
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General Stochastic Model:(
Model
output

)
+
(

Linear combination
of past outputs

)
︸ ︷︷ ︸

AR part

=
(

Linear combination of
present & past inputs

)
︸ ︷︷ ︸

MA part

Three model possibilities:
1. AR – auto regressive
2. MA – moving average
3. ARMA – mixed AR and MA

Model Input: assumed to be an i.i.d. zero mean Gaussian process:

E{v(n)}= 0 for all n

E{v(n)v∗(k)}=
{
σ2
v k = n

0 otherwise
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Auto-Regressive Models
Definition (Auto-Regressive)
The time series {x(n)} is said to be generated by an AR model if

x(n)+a∗1x(n−1)+ · · ·+a∗Mx(n−M) = v(n)

or
x(n) = w∗1x(n−1)+ · · ·+w∗Mx(n−M)+v(n)

where wk =−ak.

I This is an order M model and v(n) is referred to as the noise term
I Note that we can set a0 = 1 and write

M∑
k=0

a∗kx(n−k) = v(n)

which is a convolution sum
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Thus taking Z-transforms

Z{a∗n} = A(z) =
M∑
n=0

a∗nz
−n

Z{x(n)} = X(z) =
∞∑
n=0

x(n)z−n

Z{v(n)} = V (z) =
∞∑
n=0

v(n)z−n

and
M∑
k=0

a∗kx(n−k) = v(n) ⇒ A(z)X(z) = V (z)

If we regard v(n) as the output, then HA(z)x(n) v(n)

where HA(z) = V (z)
X(z) = A(z)
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[Notation note: figure uses u(n) as input, i.e., u(n) = v(n)]

I This is called the process analyzer
I Analyzer is an all zero system

I Impulse response is finite (FIR)
I System is BIBO stable
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If we view v(n) as the input, then we have
the process generator

HG(z)v(n) x(n)

HG(z) = X(z)
V (z) = 1

A(z)

I The process generator is an all pole
system
I Impulse response is infinite (IIR)
I System stability is an issue
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Note
HG(z) = 1

A(z) = 1∑M
n=0a

∗
nz
−n

I Factor the denominator and represent HG(z) in terms of its poles

HG(z) = 1
(1−p1z−1)(1−p2z−1) · · ·(1−pMz−1)

I p1,p2, . . . ,pM are the poles of HG(z) defined as the roots of the
characteristic equation

1+a∗1z
−1 +a∗2z

−2 + · · ·+a∗Mz
−M = 0

I HG(z) is all pole (IIR) and BIBO stable only if all poles are in the unit
circle, i.e.,

|pn|< 1 n= 1,2, · · · ,M
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Moving Average Model
Definition (Moving Average)
The time series {x(n)} is said to be generated by a Moving Average (MA)
model if

x(n) = v(n)+ b∗1v(n−1)+ · · ·+ b∗Kv(n−K)
where b1, b2, · · · , bk are the parameters of the order K MA model
I v(n) is zero mean white Gaussian noise
I The process generation model is all zero (FIR)
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Auto-Regressive Moving Average Model
Definition (Auto-Regressive Moving
Average)
In this case, {x(n)} is a mixed process where
the output is a function of past outputs and
current/past inputs

x(n)+a∗1x(n−1)+ · · ·+a∗M (n−M)
= v(n)+ b∗1v(n−1)+ · · ·+ b∗Kv(n−K)

The order is (M,K).

I v(n) is zero mean white Gaussian noise
I The process model has zeros and poles

(IIR)
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Wold Decomposition (after Herman Wold (1908–92))
Any WSS discrete time stochastic process y(n) can be expressed as

y(n) = x(n)+ s(n)

where:
I x(n) and s(n) are uncorrelated
I x(n) can be expressed by the MA model

x(n) =
∞∑
k=0

b∗kv(n−k)

I b0 = 1 and
∑∞

k=0 |bk|<∞
I v(n) is white noise uncorrelated with s(n)

I s(n) is perfectly predictable
Note: If B(z) is minimum phase, then it can be represented by an all pole
(AR) system.
I AR models are widely used because they are tractable
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Asymptotic statistics of AR processes

Recall that {x(n)} is generated by

x(n)+a∗1x(n−1)+a∗2x(n−2)+ · · ·+a∗Mx(n−M) = v(n)

or
x(n) = w∗1x(n−1)+w∗2x(n−2)+ · · ·+w∗Mx(n−M)+v(n)

I Linear constant coefficient difference equation of order M driven by v(n).
I Z-transform representation:

X(z) = V (z)
1+∑M

k=1a
∗
kz
−k
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Inverse transforming X(z) = V (z)
1+
∑M

k=1 a
∗
kz

−k
yields

x(n) = xc(n)︸ ︷︷ ︸
Homogeneous Solution

+ xp(n)︸ ︷︷ ︸
Particular Solution

I The particular solution is the result of driving HG(z) with v(n)

xp(n) =HG(z)v(n),

where z−1 is taken as the delay operator.
I The particular solution has stationary statistics
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The homogeneous solution is of the form

xc(n) =B1p
n
1 +B2p

n
2 + · · ·+BMp

n
M

where p1,p2, · · · ,pM are the roots of

1+a∗1z
−1 +a∗2z

−2 + · · ·+a∗Mz
−M = 0

I The B values depend on the initial conditions
I The homogeneous solution is not stationary
I The process is asymptotically stationary if |pn|< 1
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Correlation of a stationary AR process
Recall that an AR process can be written as

M∑
k=0

a∗kx(n−k) = v(n)

where a0 = 1.
Multiply both sides by x∗(n− l) and take E{ }.

E


M∑
k=0

a∗kx(n−k)x∗(n− l)
= E{v(n)x∗(n− l)}

Note that

E{x(n−k)x∗(n− l)} = r(l−k)
E{v(n)x∗(n− l)} = 0 for l > 0
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Thus

E


M∑
k=0

a∗kx(n−k)x∗(n− l)
 = E{v(n)x∗(n− l)}

⇒
M∑
k=0

a∗kr(l−k) = 0 for l > 0

Accordingly, the auto-correlation of the AR process satisfies
r(l) = w∗1r(l−1)+w∗2r(l−2)+ · · ·+w∗Mr(l−M)

where wk =−ak. Note that this also has the solution

r(m) =
M∑
k=1

ckp
m
k

where pk is the kth root of
1−w∗1z−1−w∗2z−2−·· ·−w∗Mz−M = 0

Why? Diff. equation (no driving function; homogeneous solution only)
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Recall that the AR characteristic equation is

1+a∗1z
−1 +a∗2z

−2 + · · ·+a∗Mz
−M = 0

This is identical to the auto-correlation characteristic equation

1−w∗1z−1−w∗2z−2−·· ·−w∗Mz−M = 0

⇒ the roots are equal
Result: A stable AR process ⇒ |pk|< 1 and

lim
m→∞r(m) = lim

m→∞

M∑
k=1

ckp
m
k = 0

(asymptotically uncorrelated)
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Yule-Walker Equations
An AR model of order M is completely specified by
I AR coefficients: a1,a2, . . . ,aM
I Variance of v(n): σ2

v

Proposition: These parameters can be determined by the auto-correlation
values: r(0), r(1), . . . , r(M).
Recall

r(l) = w∗1r(l−1)+w∗2r(l−2)+ · · ·+w∗Mr(l−M)
Case 1: Let l = 1

r(1) = w∗1r(0)+w∗2r(−1)+ · · ·+w∗Mr(1−M)

Using the fact r(−k) = r∗(k)

r(1) = w∗1r(0)+w∗2r
∗(1)+ · · ·+w∗Mr

∗(M −1)
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Taking the complex conjugate

r∗(1) = w1r(0)+w2r(1)+ · · ·+wMr(M −1)
= wT [r(0), r(1), · · · , r(M −1)]T

where wT = [w1,w2, · · · ,wM ]
Case 2: Now let l = 2

r(2) = w∗1r(1)+w∗2r(0)+w∗3r(−1)+ · · ·+w∗Mr(2−M)
⇒ r∗(2) = w1r

∗(1)+w2r(0)+w3r(1) · · ·+wMr(M −2)
= wT [r∗(1), r(0), r(1), · · · , r(M −2)]T

Case 3: Similarly, for l = 3

r(3) = w∗1r(2)+w∗2r(1)+w∗3r(0)+w∗4r(−1) · · ·+w∗Mr(3−M)
⇒ r∗(3) = w1r

∗(2)+w2r
∗(1)+w3r(0)+w4r(1) · · ·+wMr(M −3)

= wT [r∗(2), r∗(1), r(0), r(1), · · · , r(M −3)]T
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Repeating the process & combining results in matrix form

r(0) r(1) · · · r(M −1)
r∗(1) r(0) · · · r(M −2)
r∗(2) r∗(1) · · · r(M −3)
... ... . . . ...

r∗(M −1) r∗(M −2) · · · r(0)





w1
w2
w3
...

wM

=



r∗(1)
r∗(2)
r∗(3)
...
r∗(M)


or more compactly

Rw = r where r = [r(1), r(2), r(3), . . . , r(M)]H

Result: Given the auto-correlation values, the AR coefficients we can be
uniquely determine

w = R−1r
where

ak =−wk k = 1,2, · · · ,M
Assumption: R is nonsingular
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Still to be determined: variance of the driving sequence v(n)
Recall: E

{∑M
k=0a

∗
kx(n−k)x∗(n− l)

}
= E{v(n)x∗(n− l)}

⇒
M∑
k=0

a∗kr(l−k) = E{v(n)x∗(n− l)} (∗)

Note that
x∗(n) = [w1x

∗(n−1)+w2x
∗(n−2)+ · · ·+wMx

∗(n−M)+v∗(n)] (∗∗)
Let l = 0 in (∗) and use (∗∗) on the RHS

M∑
k=0

a∗kr(−k) = E{v(n)x∗(n)}

= E{v(n)[w1x
∗(n−1)+w2x

∗(n−2)+ · · ·
+wMx∗(n−M)+v∗(n)]}

Note that
E{v(n)wkx∗(n−k)}= 0, k = 1,2, · · · ,M
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Thus E{v(n)wkx∗(n−k)}= 0,k = 1,2, · · · ,M gives
M∑
k=0

a∗kr(−k) = E{v(n)x∗(n)}

= E{v(n)[w1x
∗(n−1)+w2x

∗(n−2)+ · · ·
+wMx∗(n−M)+v∗(n)]}

= E{v(n)v∗(n)}
or conjugating

σ2
v =

M∑
k=0

akr(k)

Final Yule–Walker Result

Rw = r and σ2
v =

M∑
k=0

akr(k)
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Example (AR Order-2 Process)
Consider the process defined by

x(n)+a1x(n−1)+a2x(n−2) = v(n)
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The process
x(n)+a1x(n−1)+a2x(n−2) = v(n)

has characteristic equation

1+a1z
−1 +a2z

−2 = 0

⇒ p1,p2 =
−a1±

√
a2

1−4a2

2
Stability enforces the constraints

|pk|< 1⇒


−1≤ a2 +a1
−1≤ a2−a1
−1≤ a2 ≤ 1
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Recall that the auto-correlation can be expressed as

r(m) =
M∑
k=1

ckp
m
k = c1p

m
1 + c2p

m
2

I p1,p2 real, positive ⇒ r(m) positive
decaying exponential

I p1,p2 real, negative ⇒ r(m) alternate sign
decaying exponential

I p1,p2 complex conjugate ⇒ r(m)
exponentially decaying sinusoid
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The characteristics of the AR process vary in a related fashion to the pole
placements.
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Model Order Selection
Model Order Selection
A model is typically estimated from a finite set of observation data.
I Result: Use Yule-Walker equations to estimate model parameters
I Open Question: How do we estimate the model order?
I Solution: Use information theoretic criteria.

I Akaike’s information criterion, developed by Hirotsugu Akaike under the name of
“an information criterion” (AIC) in 1971

I Take xi = x(i), i= 1,2, · · · ,N to be N observations of a stationary
discrete time process.

I Let θ̂ be the estimated model (AR/MA/ARMA) order m parameters

θ̂m = [θ̂1m, θ̂2m, · · · , θ̂Mm]T
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I Let fx(xi|θ̂m) be the conditional pdf of xi given the estimated model
defined by θ̂m.

I Set L(θ̂m) = max
θ̂m

∑N
i=1 lnfx(xi|θ̂m).

I The likelihood function (log of conditional pdf evaluated at the maximum likelihood
estimates of the model parameters, θ̂m).

I Then the AIC model order is given by m that minimizes
AIC(m) = −2L(θ̂m)︸ ︷︷ ︸

Always decreasing

+ 2m︸︷︷︸
Parameter cost function

I The AIC methodology attempts to find the model that best explains the
data with a minimum of free parameters.

m  optimal

AIC(m)

m
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