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. Review of Probability
. Stationary processes

Eigen Analysis, Singular Value Decomposition (SVD) and Principal
Component Analysis (PCA)

The Learning Problem

Training vs Testing

Estimation theory: Maximum likelihood and Bayes estimation
The Wiener Filter

Adaptive Optimization: Steepest descent and the LMS algorithm
Least Squares (LS) and Recursive Least Squares (RLS) algorithm
Overfitting

Regularization: Ridge and Lasso regression models.

Neural Networks

Matrix Completion
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Stationary Process and Models

» Statistic process describes the time evolution of statistical phenomena

» A stochastic process is not a single function of time but an infinite
number of possible realizations

» A single realization is called a time series

» A full joint distribution function of an arbitrary stochastic process is
difficult to obtain or estimate

» Settle for a partial characterization
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Consider a discrete-time stochastic process
z(n),x(n—1),...,x(n— M)
which may be complex.

Definitions (Mean, Auto-Correlation, and Auto-Covariance)
The mean process is given by

p(n) = E{x(n)}
The auto—correlation is defined as
r(n,n—k)=E{zx(n)z*(n—k)}
The auto—covariance is given by

c(nn—k) = E{fz(n)—pn)]]
= r(n,n—k)—pn)p*(n—k)
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Definition (Wide-Sense Stationary)

A discrete-time stochastic process is wide—sense stationary (WSS) if

pu(n)=p forall n
r(n,n—k)=r(k) and
cnyn—k)=c(k) k=0,£1,£2,...

Let x(n) = [#(n),z(n—1),...,2(n— M +1)]T be a M x 1 observation vector.
Then for {z(n)} WSS, the correlation matrix is

R = E{x(n)x"(n)}
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Properties of the correlation matrices

For a stationary discrete time process: R¥ =R (Hermetian)

r(0) r(1) coor(M—=1)
r(—1) r(0) v (M —2) _
P(=M+1) r(—M+2) r(0)
r(0) r*(—1) r*(—M+1)
r*(1) r(0) r*(—M+2)
P (M—1) r*(M—2) r(0)

Consequence: = r(—k) =r*(k)
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The correlation matrix is Toeplitz

r(0) r(1) r(2) oo (M —1) ]

r*(1) r(0) r(1) coor(M=2)

R=| 7(2) r*(1) r(0) e (M =3)
(M —1) (M =2) (M=3) - r(0) |

For any non-zero vector a
aRaf >0 (positive semi-definite)
and usually
aRa’l >0 (positive definite)

Result: R is positive definite if the samples in x are not linearly dependent. In
this case R~ exists.

Historical Note: Diagonal-constant matrices are named after the
mathematician Otto Toeplitz (1881-1940)
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Stochastic Models

» A model is used to describe the hidden laws governing the generation of
physical data observed

» We assume that z(n),z(n—1),--- have statistical dependencies that can
be modeled as

Discrete time

linear fitler x()

v(n)—»

where v(n) is a purely random process
» Linear model types:

1. Auto Regressive — no past model input samples used
2. Moving Average — no past model output samples used
3. Auto Regressive Moving Average — both past input and output used
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General Stochastic Model:

Model Linear combination | [ Linear combination of
output of past outputs ~ \ present & past inputs

AR part MA part

Three model possibilities:
1. AR — auto regressive
2. MA — moving average
3. ARMA — mixed AR and MA

Model Input: assumed to be an i.i.d. zero mean Gaussian process:
E{v(n)}=0 foralln

o2 k=n

B(u(m () ={

otherwise
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Auto-Regressive Models
Definition (Auto-Regressive)
The time series {x(n)} is said to be generated by an AR model if
z(n)+ajz(n—1)+---+ayz(n—M)=v(n)

or
z(n) =wiz(n—1)+---+wyz(n—M)+v(n)
where wi = —ay.
» This is an order M model and v(n) is referred to as the noise term
» Note that we can set ag = 1 and write

M
Z apr(n—Fk)=wv(n)
k=0

which is a convolution sum
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Thus taking Z-transforms
26} = A=y
Z{em)} = X(2)= Y a(n)z™
Z{om)} = V(z)= 3 vin)s"

and

M
kz_:oa;;x(n —k)=v(n) = A(2)X(2) =V(z)

If we regard v(n) as the output, then

x(n)— Ha@ > v(n)

where Hy(z) = Y& — A(z)
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Stationary Processes

[Notation note: figure uses u(n) as input, i.e., u(n) =v(n)]

Sample of
AR process,
u(n)

Sample of
white noise,

v(n)

» This is called the process analyzer

» Analyzer is an all zero system
» Impulse response is finite (FIR)
P> System is BIBO stable
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Stationary Processes

Sample of
»- AR process,
u(n)

Sample of
white noise,

v(n)

If we view v(n) as the input, then we have
the process generator

v(n) X(n)

X(z) 1
V(z)  Al2)

Ha(z) =

» The process generator is an all pole
system
» Impulse response is infinite (IIR)
» System stability is an issue

®)
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Note

A(z)  SiLyanz

» Factor the denominator and represent Hg(z) in terms of its poles
1
(I=prz= ) (I =paz=t)--- (1 =puzt)

» p1,D2,...,par are the poles of Hi(z) defined as the roots of the
characteristic equation

Hg(z) =

I+atz a3z 2+ +ayzM=0

» Hg(z) is all pole (IIR) and BIBO stable only if all poles are in the unit
circle, i.e.,
lpn| <1 n=1,2,--- M

Y
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Stationary Processes

Moving Average Model
Definition (Moving Average)
The time series {x(n)} is said to be generated by a Moving Average (MA)

model if
z(n) =v(n)+bjv(n—1)+---+bxv(n—K)

where by,bg, -+ , by are the parameters of the order K MA model

» v(n) is zero mean white Gaussian noise
» The process generation model is all zero (FIR)

Sample of |_| vin-1) |_| vin-2)
white noise, z- ’ 21 ’
Vi) - |
s } 5 1Sample of
MA 3
(Z) e process,

Figure 2.3  Moving average mode] (process generator).
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Auto-Regressive Moving Average Model

Average) e e
In this case, {x(n)} is a mixed process where

the output is a function of past outputs and ® . . ®

current/past inputs ]
z(n)+ajx(n—1)+---+ay(n— M) ° -
=v(n) +bro(n —1) +---+bgo(n - K) S .
The order is (M, K). . | - .
’ &)

» v(n) is zero mean white Gaussian noise
» The process model has zeros and poles j]

(IIR)

Definition (Auto-Regressive Moving @ [lj D=
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Stationary Processes
Wold Decomposition (after Herman Wold (1908-92))
Any WSS discrete time stochastic process y(n) can be expressed as

y(n) =x(n)+s(n)

where:
» x(n) and s(n) are uncorrelated
» x(n) can be expressed by the MA model

z(n) = io: brv(n—k)
k=0

» by =1 and Zzozo|bk| < o0
» v(n) is white noise uncorrelated with s(n)

» s(n) is perfectly predictable
Note: If B(z) is minimum phase, then it can be represented by an all pole
(AR) system.

» AR models are widely used because they are tractable
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Asymptotic statistics of AR processes

Recall that {z(n)} is generated by
z(n)+ajz(n—1)+ayr(n—2) +---+apyz(n—M) =v(n)

or
z(n) =wizx(n—1)+wizx(n—2)+ - +wiyx(n— M) +v(n)

» Linear constant coefficient difference equation of order M driven by v(n).
» /-transform representation:

V(2)
1+ Zﬁ/le a?;z_k

X(z)=
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V(z)

Inverse transforming X (z) = [y yields
k=1%%7
z(n)= z(n) 4+ wpn)

Homogeneous Solution Particular Solution

» The particular solution is the result of driving Hg(z) with v(n)

zp(n) = Hg(2)v(n),

where 21 is taken as the delay operator.

» The particular solution has stationary statistics
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The homogeneous solution is of the form
ze(n) = Bipy + Baph + -+ + Bupiy
where p1,p2,---,pyr are the roots of

14+aiz tabe 2+ +ayzM=0

» The B values depend on the initial conditions
» The homogeneous solution is not stationary

» The process is asymptotically stationary if |p,| <1
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Correlation of a stationary AR process

Recall that an AR process can be written as

M
> ajz(n—k)=v(n)
k=0

where qg = 1.
Multiply both sides by x*(n —1) and take E{ }.

M
E {kz_:oa,i:v(n —k)x*(n— l)} = FE{v(n)x*(n—1)}

Note that

E{zx(n—k)x*(n—=0)} = r(l—k)
E{v(n)x*(n—10)} = 0 forl>0
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Thus

M
E {kz_oa};:c(n —k)x*(n— l)} = E{v(n)x*(n—1)}

M
= > ajr(l—k) = 0 fori>0
k=0

Accordingly, the auto-correlation of the AR process satisfies
r(l) =wir(l—1)+wsr(l—2)+---+wyr(l— M)

where w;, = —ay.. Note that this also has the solution

M
r(m) =" crpy’
k=1

where p;. is the kth root of

1 * —2

l—wiz b —wiz?— o —whz M =0

Why? Diff. equation (no driving function; homogeneous solution only)
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Recall that the AR characteristic equation is

I+aiz" tabz2 4+ +ayzM=0

This is identical to the auto-correlation characteristic equation
l—wiz b —wiz?— o —whz M =0
= the roots are equal

Result: A stable AR process = |pi| <1 and

lim r(m)=lim_ chpk =0

m—0o0

(asymptotically uncorrelated)
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Yule-Walker Equations
An AR model of order M is completely specified by

» AR coefficients: ay,a9,...,ap

2

» Variance of v(n): o

Proposition: These parameters can be determined by the auto-correlation
values: 7(0),7(1),...,r(M).
Recall
r(l) =wir(l—1)+wsr(l—2)+---+wyr(l— M)
Case 1: Let =1
r(1) = wir(0) +wyr(=1)+-- -+ wy,r(l — M)
Using the fact r(—k) = r*(k)

r(1) = wir(0) +wyr* (1) + - +wyr (M —1)
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Taking the complex conjugate

r*(1) = wir(0)+wer(1)+---+wpr(M—1)
= WT[T(O)7T(1)7”' 7T(M_ 1)]T

T

where w' = [wy,wa, -+ ,wp]

Case 2: Now let [ =2
r2) = wir()bugr(0) +uir(~1) bt uir(2— M)
=7r"(2) = wir(1)+wer(0)+wsr(l):- - +wyr(M —2)
= w [ (1),7(0),r(1), - (M =2)]

Case 3: Similarly, for [ =3

r) = wir(2) (1) +wir(0) +wjr(~1)--+ wir(3 - M)

=71"3) = wir'(2)+wer* (1) +wsr(0) +wyr(1)---+wprr(M —3)
= WT[T*<2),T*(1),7’(0),7”(1),“- 77’(M—3)]T
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Repeating the process & combining results in matrix form

r(0) r(1) oo (M =1) [ wy ] [ r (1)

r*(1) r(0) ceeor(M—2) w9 r*(2)

r*(2) r*(1) o (M —3) ws | = | r*(3)
(M —1) (M =2) 10 | Lwn | | ) |

or more compactly
Rw=r  where r=[r(1),r(2),r(3),...,r(M)]"

Result: Given the auto-correlation values, the AR coefficients we can be

uniquely determine
w=R7Ir

where
ap = —Wg k’:1,2,--- ,M

Assumption: R is nonsingular
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Still to be determined: variance of the driving sequence v(n)
Recall: £ {nyzo ajr(n—k)x*(n— l)} = FE{v(n)x*(n—1)}

M
= k;)a;;r(l —k)=FE{v(n)x*(n—10)} (%)

Note that
z*(n) =wiz*(n—1)+war™ (n—2)+---+wyx™(n—M)+v"(n)] (%)
Let [ =0 in (%) and use (*x*) on the RHS

M
> aipr(=k) = E{v(n)z"(n)}
k=0

= E{v(n)wiz*(n—1)+wex*(n—2)4---
+wyx*(n—M)+v*(n)]}
Note that

E{v(n)wgx*(n—k)} =0, k=1,2,--- M

)
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Thus E{v(n)wgz*(n—k)} =0,k=1,2,---, M gives
M
g:oa?;r(—k) = E{o(n)z"(n)}
= E{v(n)wrz*(n—1)+wx*(n—2)4---
+wpra*(n— M) +v*(n)]}
= E{o(n)v*(n)}

or conjugating

M
oo =Y apr(k)
k=0

Final Yule—Walker Result

M
Rw=r and o2=> apr(k)
k=0
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Example (AR Order-2 Process)
Consider the process defined by

z(n)+az(n—1)+ax(n—2)=v(n)

Sample of + Sample of
‘white noise, —>@ AR process
(n) &/ of order 2,

u(n)




Stationary Processes ARE FSAN/ELEG815

The process
z(n)+arx(n—1)+ax(n—2) =v(n)

has characteristic equation

l4a1z ' +asz72=0 1

_a/l :i: A/ a,% - 4@2 &:]l:;p'ex
2
Stability enforces the constraints - <

= Pp1,P2 =

P

ay

—1<as+ay
ppl <1=< —1<as—a
—1§a2§1

Region 1 Region 2
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Recall that the auto-correlation can be expressed as

M

r(m) =Y ckpp’ = c1p" + coph’
k=1

az

» p1,p2 real, positive = r(m) positive
decaying exponential

» p1,p2 real, negative = r(m) alternate sign
decaying exponential

» p1,p2 complex conjugate = r(m)
exponentially decaying sinusoid

Region 2
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00

om = rlm)/ri0}

Lag, m

(e}

The characteristics of the AR process vary in a related fashion to the pole
placements.
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White noise, vin}

AR srocess, u(n)

o)

AR process, uin)

AR process, ut
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Model Order Selection
Model Order Selection

A model is typically estimated from a finite set of observation data.

» Result: Use Yule-Walker equations to estimate model parameters

» Open Question: How do we estimate the model order?
» Solution: Use information theoretic criteria.

» Akaike's information criterion, developed by Hirotsugu Akaike under the name of
“an information criterion” (AIC) in 1971

» Take x; =z(i),i =1,2,--- ,N to be N observations of a stationary
discrete time process.

> Let 0 be the estimated model (AR/MA/ARMA) order m parameters

ém - [é1m7é2m> e 79AMTTL]T
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> Let f.(xi|0) be the conditional pdf of z; given the estimated model
definedAby Om,
» Set L(0),) = maXZ VI fo (2|00m).
Om

> The likelihood function (log of conditional pdf evaluated at the maximum likelihood
estimates of the model parameters, 6,,).

» Then the AIC model order is given by m that minimizes
AlC(m) = —2L(0,,) + a?/n/

Always decreasing Parameter cost function

» The AIC methodology attempts to find the model that best explains the
data with a minimum of free parameters.

- \/

]
m optimal m
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